

International Journal for Pharmaceutical Research Scholars (IJPRS)

ISSN No: 2277 - 7873

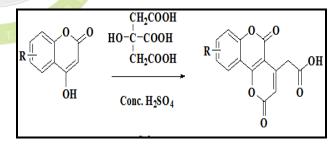
RESEARCH ARTICLE

Synthesis of New Condensed Coumarin 4- Acetic Acid Derivatives Karia DC*¹, Pancholi KS², Varu RA³

*¹Assistant Professor, Patel J.D.K. Davolwala Science College, Borsad, Gujarat, India.
²Assistant Professor, H. & H.B.Kotak Institute of Science, Rajkot, Gujarat, India.
³Assistant Professor, Bahauddin Science College, Junagadh, Gujarat, India.
Manuscript No: IJPRS/V2/I4/00192, Received On: 23/10/2013, Accepted On: 09/11/2013

ABSTRACT

Synthesis of a series of 2-(2,5-dihydro-2,5-dioxopyrano[3,2-c]chromen-4-yl)acetic acid. (4a-g) was achieved from different substituted 4-hydroxycoumarin, anhydrous citric acid and using H_2SO_4 added and 10°C with string. The structures of the products were supported by FTIR, PMR and mass spectral data.


KEYWORDS

2-(2,5-dihydro-2,5-dioxopyrano[3,2-c]chromen-4-yl)acetic acid, Different substituted 4-hydroxycoumarin, Anhydrous citric acid, H₂SO₄ only 10°C string

INTRODUCTION

Coumarins are a group of naturally occurring lactones with wide ranging biological activities¹. Varieties of 4-substituted coumarins possessing ami-noalkyl³ $hydroxyl^2$, arylaminomethyl⁴. sulphonamido⁵ and aryloxymethyl⁶ groups have exhibited anti coagulant, anti microbial and anti inflammatory activities. Coumarin 4-acetic acids have been found to exhibit good inflammation inhibiting activity in animal $models^7$. They have been employed as key intermediates in the design and synthesis of polycyclic coumarins related to Protober-berine alkaloids⁸. The reactivity of C4-methylene group has been employed for the construction of many 4-substituted bi-heterocyclic coumarins. Solid state con-formational studies on coumarin 4-acetic acid⁹, ester^{10,11} and dithionate¹² have been reported recently. It needs to be emphasized that the crystallographic study on esters is of considerable biological interest¹³.

*Address for Correspondence: Dr. Denish Karia, Patel J.D.K. Davolwala Science College, Borsad, Gujarat, India. E-Mail Id: kailash.pancholikotak@gmail.com To evade these problems, we have developed a new etiquette for the synthesis of novel 4-hydroxy-6-methyl-3-(substituted methyl)-2H-chromen-2-one (4a-g) with the advantage of good yield and environmentally friendliness (Scheme-a).

EXPERIMENTAL

Typical Experimental Procedure for the Synthesis of Pyrano Coumarin 4-Acetic Acid

A mixture of anhydrous citric acid (0.1M) and 28 ml of concentrated sulphuric acid was stirred at room temperature for one hour, and then slowly heated up to 70°C on oil bath. After half an hour at this temperature, with stirring throughout, the evolution of carbon monoxide

had slackened and the clear yellow colored solution was rapidly cooled to 0°C. To this stirred solution, phenol (4-Hydroxy coumarin) (0.08 M) was added and 11.2 ml of concentrated sulphuric acid, each in three equal portions, at a rate that the temperature does not exceed 10°C. The resulting reaction mixture was stored at 0°C for sixteen hours, poured into ice and the resulting precipitates were filtered off and washed thoroughly with water. It was then treated with 10% sodium bicarbonate solution and then filtered. The filtrate, on acidification gave coumarin-4-acetic acids. The bicarbonate insoluble portion is 4-methyl Coumarin. The purity of the compound is checked by TLC (Methanol: Chloroform = 1:9).

2-(2,5-dihydro-8-hydroxy-2,5-

dioxopyrano[3,2-c]chromen-4-yl)acetic acid 4a. Yield: 55%; MP 186-188°C; MS: m/z M+1 273 and M-1 271; IR (cm⁻¹): 3350 to 2877 (Broad) (O-H stretching of COOH), 3034 (C-H stretching of aromatic ring), 2985 (C-H asymmetrical stretching of CH₂ group), 2887 (C-H symmetrical stretching of CH_2 group), 1699, 1608 (C=O stretching of coumarin), 1565, 1502 and 1458 (C=C stretching of aromatic ring), 1309 (C-H asymmetrical deformation of 1276 (C-H CH₂ group), symmetrical deformation of CH₂ group), 1195, 1103, 833 (C-O-C stretching); ¹H NMR (DMSO-d6) δ ppm: 3.35 (s, 2H), 5.60 (s, 1H), 7.33-7.38 (multi, 2H), 7.63-7.67 (d of t, 1H), 7.82-7.84 (d of d, 1H), 12.52 (s, 1H (COOH); Anal. Calcd. C₁₄H₈O₆: C, 61.77; H, 2.96; Found: C, 62.01; H, 2.73%.

2-(9-methyl-2,5-dioxo-2,5-dihydropyrano[3,2c]chromen-4-yl)acetic acid 4b. Yield: 58%; MP 174-176 °C; MS: m/z 286; IR (cm⁻¹): 3350 to 2874 (Broad) (O-H stretching of COOH), 3014 (C-H stretching of aromatic ring), 2937 (C-H asymmetrical stretching of Alkyl group), 2874 (C-H symmetrical stretching of Alkvl group), 1737, 1610 (C=O stretching of coumarin), 1597, 1548 and 1443 (C=C)stretching of aromatic ring), 1427 (C-H asymmetrical deformation of CH₂ group), 1217 (C-H symmetrical deformation of CH₂ group), 1203, 1168, 1022 (C-O-C stretching); ¹H NMR (DMSO-d6) δ ppm: 2.37 (s, 3H), 3.81 (s, 2H),

6.63 (s, 1H), 7.29 and 7.38 (Two d, 2H), 7.77 (s, 1H), 12.08 (s, 1H (COOH); Anal. Calcd. $C_{15}H_{10}O_6$: C, 62.94; H, 3.52; O, 33.54; Found: C, 62.87; H, 3.46; O, 33.44%.

2-(2,5-dihydro-8-methoxy-2,5-

dioxopyrano[3,2-c]chromen-4-yl)acetic acid **4c.** Yield: 52%: MP 184-186 °C: MS: m/z 302: IR (cm^{-1}) : 3340 to 2867 (Broad) (O-H stretching of COOH), 3030 (C-H stretching of aromatic ring), 2980 (C-H asymmetrical stretching of CH₂ group), 2927 (C-H asymmetrical stretching of Alkvl group), 2870 (C-H symmetrical stretching of Alkyl group), 2877 (C-H symmetrical stretching of CH₂ group), 1690, 1600 (C=O stretching of coumarin), 1561, 1501 and 1450 (C=C stretching of aromatic ring), 1301 (C-H asymmetrical deformation of CH₂ group), 1274 (C-H symmetrical deformation of CH₂ group), 1195, 1103. 833 (C-O-C)stretching); ¹H NMR (DMSO-d6) δ ppm: 3.30 (s, 3H), 3.80 (s, 2H), 6.43 (s, 1H), 7.22and 7.33(Two d, 2H), 7.73 (s, 1H), 12.03 (s, 1H (COOH); Anal. Calcd. C₁₅H₁₀O₇: C, 59.61; H, 3.33; O, 37.06; Found: C, 59.60; H, 3.31; O, 37.00%.

2-(2,5-dihydro-9-nitro-2,5-dioxopyrano[3,2-

c]chromen-4-yl)acetic acid 4d. Yield: 50%; MP 180-183 °C; MS: m/z 317; IR (cm⁻¹): 3353 to 2857 (Broad) (O-H stretching of COOH), 3054 (C-H stretching of aromatic ring), 2975 (C-H asymmetrical stretching of CH₂ group), 2887 (C-H symmetrical stretching of CH₂ group), 1689, 1605 (C=O stretching of coumarin), 1544 (N-O stretching of NO₂), 1504 and 1454 (C=C stretching of aromatic ring), 1309 (C-H asymmetrical deformation of CH₂ group), 1271 (C-H symmetrical deformation of CH₂ group), 1195, 1103, 833 (C-O-C)stretching); ¹H NMR (DMSO-d6) δ ppm: 3.32 (s, 2H), 5.65(s, 1H), 7.30-7.35(multi, 1H), 7.60-7.64 (d of t, 1H), 7.72-7.74 (d of d, 1H), 12.50 (s, 1H (COOH); Anal. Calcd. C₁₄H₇NO₈: C. 53.01; H, 2.22; N, 4.42; O, 40.35; Found: C, 53.00; H. 2.22; N. 4.40; O. 40.30%.

2-(2,5-dihydro-9-methoxy-2,5-

dioxopyrano[3,2-c]chromen-4-yl)acetic acid **4e.** Yield: 55%; MP 184-185 °C; MS: m/z 302; IR (cm⁻¹): 3340 to 2865 (Broad) (O-H stretching of COOH), 3030 (C-H stretching of aromatic ring), 2980 (C-H asymmetrical stretching of CH₂ group), 2947 (C-H asymmetrical stretching of Alkyl group), 2870 (C-H symmetrical stretching of Alkyl group), 2877 (C-H symmetrical stretching of CH₂ group), 1690, 1604 (C=O stretching of coumarin), 1561, 1502 and 1450 (C=C stretching of aromatic ring),

1307 (C-H asymmetrical deformation of CH_2 group), 1272 (C-H symmetrical deformation of CH_2 group), 1185, 1104, 830 (C-O-C stretching);); ¹H NMR (DMSO-d6) δ ppm: 3.32 (s, 3H), 3.82 (s, 2H), 6.40 (s, 1H), 7.20 and 7.33(Two d, 2H), 7.73 (s, 1H), 12.03 (s, 1H (COOH); Anal. Calcd. $C_{15}H_{10}O_7$: C, 59.61; H, 3.33; O, 37.06; Found: C, 59.55; H, 3.21; O, 36.92%.

	Antibacterial activity				Antifungal activity	
Compound	Gram +ve		Gram -ve			
	S. aureus	S. pyrogenes	E. Cali	P. aeruginosa	C. albicans	A. clavatus
3 a	24	450	450	450	250	550
3b	450	550	550	550	<550	<550
3b	100	100	250	200	550	450
3c	550	450	550	550	550	450
3d	200	100	100	200	250	550
3e	550	550	450	450	250	550
3f	450	450	250	250	250	550
3g	450	450	250	250	250	550
Gentamycin	0.25	0.5	0.05	1	-	-
Ampicillin	250	100	100	100	-	-
Chloramphenicol	50	50	50	50	-	-
Iprofloxacin	50	50	25	25	-	-
Norfloxacin	10	10	10	10	-	-
Nystatin	-	-	-	-	100	100
Greseofulvin	-	-	-	-	500	100

Table 1: Antimicrobial activity of compounds 3a-g

2-(9-chloro-2,5-dihydro-2,5-dioxopyrano[3,2c]chromen-4-yl)acetic acid 4f. Yield: 60%; MP 175-180 °C; MS: m/z 306; IR (cm⁻¹): 3353 to 2857 (Broad) (O-H stretching of COOH), 3050 (C-H stretching of aromatic ring), 2975 (C-H asymmetrical stretching of CH₂ group), 2887 (C-H symmetrical stretching of CH₂ group), 1680, 1605 (C=O stretching of coumarin), 1504 and 1453 (C=C stretching of aromatic ring), 1302 (C-H asymmetrical deformation of CH₂ group), 1274 (C-H symmetrical deformation of CH₂ group), 1195, 1103, 833 (C-O-C stretching); 851 (C-Cl stretching);); ¹H NMR (DMSO-d6) δ ppm: 3.30 (s, 2H), 5.60(s, 1H), 7.24-7.30(multi, 1H), 7.54-7.60 (d of t, 1H), 7.67-7.71 (d of d, 1H), 12.51 (s, 1H (COOH); Anal. Calcd. C₁₄H₇ClO₆: C, 54.83; H, 2.30; Cl, 11.56; O, 31.30; Found: C, 54.73; H, 2.20; Cl, 11.26; O, 31.20%.

2-(2,5-dihydro-7-nitro-2,5-dioxopyrano[3,2c]chromen-4-yl)acetic acid 4g. Yield: 51%; MP 180-184 °C; MS: m/z 317; IR (cm⁻¹): 3355 to 2858 (Broad) (O-H stretching of COOH), 3057 (C-H stretching of aromatic ring), 2985 (C-H asymmetrical stretching of CH₂ group), 2877 (C-H symmetrical stretching of CH₂ group), 1679, 1615 (C=O stretching of coumarin), 1541 (N-O stretching of NO₂) 1511 and 1451 (C=C stretching of aromatic ring), 1319 (C-H asymmetrical deformation of CH₂ group), 1270 (C-H symmetrical deformation of CH₂ group), 1195, 1100, 830 (C-O-C stretching);); ¹H NMR (DMSO-d6) δ ppm: 3.24 (s, 2H), 5.65(s, 1H), 7.30-7.24(multi, 1H), 7.45-7.54 (d of t, 1H), 7.65-7.70 (d of d, 1H), 12.44 (s, 1H (COOH); Anal. Calcd. C₁₄H₇NO₈: C, 53.01; H, 2.22; N, 4.42; O, 40.35; Found: C, 52.89; H, 2.21; N, 4.37; O, 40.28%.

CONCLUSION

Various Coumarin 4- acetic acids like derivatives were prepared by reaction of different 4-Hydroxy Coumarin as a phenolic compound with the citric acid the compounds prepared in this chapter possess chromene nucleus and has as fused core structure at C3 and C4 position. And this compound is good yield with biological activity.

REFERENCES

- Kulkarni MV, Kulkarni GM, Lin CH and Sun CM, "Coumarins and 1 Azacoumarins as Biodynamic Agents," Current Medicinal Chemistry, 2006, 13(23), 2795-2818. doi:10.2174/092986706778521968.
- Roseman S, Heubuer CF, Pankratz R and Link KP, "Studies on 4-Hydroxy Coumarins. XVI. The Metabolism of 4-Hydroxy Coumarins in the Dog," Journal of the American Chemical Society, 1954, 76(6), 1650-1652. doi:10.1021/ja01635a055.
- P. Laurin, D. Ferroud, L. Schiol, M. Klich, C. Dupuis- Hamelin, P. Mauvais, P. Lassaigne, A. Bonnefoy and B. Musicki, "Structure-Activity Relationship in Two Series of Aminoalkyl Substituted Coumarin Inhibitors of Gyrase B," Bioorganic and Medicinal Chemistry Letters, 1999, 9(19), 2875-2880.
- 4. Kulkarni MV and Patil VD, "Studies on Coumarins (Part 1)," Archiv der Pharmazie, 1981, 314(8), 708-711, doi:10.1002/ardp.19813140810.
- Hanmantgad SS, Kulkarni MV and Patil VD, "Syn- thesis and Biological Activity of Some 4-(Sulphonamido- Methyl)-Coumarins," Indian Journal of Chemistry, 1985, 24B(4), 459-461.
- Ghate M and Kulkarni MV, "Synthesis of Vanillin Ethers from 4-Bromomethyl Coumarins as Anti-Inflammatory Agents," European Journal of Medicinal Chemistry, 2003, 38(3), 297-302. doi:10.1016/S0223-5234(03)00016-3.
- Basanagouda M, Jadhav VB, M. V. Kulkarni MV and Nagendra RR, "Computer Aided Prediction of Biological Activity Spectra: Study of Correlation between Predicted and Observed Activities for Coumarin-4-Acetic Acids," Indian Journal of Pharmaceutical Sciences, 2011, 73(1), 88-92.
- 8. Jadhav VB, Nayak SK, Row TN and Kulkarni MV, "Synthesis, Structure and

DNA Cleavage Studies of Coumarin Analogues of Tetrahydroisoquinoline and Protoberberine Alkaloids," European Journal of Medicinal Chemistry, 2010, 45(9), 3575-3580.

- Sivakumar K, Jesurethinam F, Subramanian K and Natarajan S, "7-Hydroxy-4-Coumarin Acetic Acid Mono- hydrate," Acta Crystallographica Section C, 1990, 46, 1663-1665. doi:10.1107/S0108270189011522.
- 10. Naveen S, Anandwalkar SM, et al., "7,8-Dimethyl Cou- marin 4-Acetic Acid Ethyl Esters," Analytical Sciences, 2006, 22, X173-X174.
- 11. Fujii I, Mano Y and Hirayama N, "Crystal of 4-Ethoxy- coumarin" Analytical Science, 2005, 21, x7-x8.

- Mahabaleshwaraiah NM, Kumar KM, O. Kotresh O, Al-Eryani WFA and Devarajgowda HC, "(6-Methoxy-2- Oxo-2H-Chromen-4-yl) Methylpyrrolidine-1-Carbodithiate," Acta Crystallographica, 2012, E68(5), 1566.
- Deslongchamps P, U. O. Cheriyan UO, Pradere JP, Soucy P and Taillefer RJ, "Hydrolysis and Isomerization of syn Unsymmetrical N,N-Dialkylated Immidate Salts. Experimental Evidence for Conformational Changes and for Stereo Electronically Controlled Cleaves in Hemi-Or- thoamide Tetrahedral Intermediates," Nouveau Journal de Chimie, 1979, 3(2), 343-350.

